TLS for PVA?

Michael Davidsaver George McIntyre

... what is best in life?

- Maximize control system uptime
- Minimize time to repair
- Get a good night's sleep

Why talk about "Security"?

https://arstechnica.com/information-technology/2018/01/the-internet-of-omg-vulnerable-factory-and-power-grid-controls-on-internet/

... Part of the issue is that many of these systems are outside of the usual domain of IT departments and run by separate organizations with a much different sort of security ethos. ...

This is us!

Why talk about "Security"?

https://arstechnica.com/information-technology/2018/01/the-internet-of-omg-vulnerable-factory-and-power-grid-controls-on-internet/

... Part of the issue is that many of these systems are outside of the usual domain of IT departments and run by separate organizations with a much different sort of security ethos. ...

Implications...

- Outside of this room our concern for operational efficiency can be an issue!
- IT will take blame if we get hacked regardless of prior involvement
- IT folks are not (always) incentived to maximize uptime, etc.

Why am I talking to you?

Opportunity

to be proactive and add strong security EPICS toolbox.

Fear

 Reaction to a ~high profile hack of a science facility will force control systems to ~entirely disconnect from the internet.

Why talk about "Security"?

- Zero-ish trust
 - Trust is the hardest part of securing anything
 - ... because you have to trust someone(s)
- Air-ish gap
 - imo. an "aspirational" more than a practical reality
 - Still has the potential to be massively inconvenient

Why not air gap?

- Notifications
- Remote troubleshooting / repair
- Continuous improvement
 - SNS added 2x PVs since end of commissioning
- User facilities have users
 - ... who are remote
 - ... who can go elsewhere!

HTTP vs. PVA/CA

Multiplicity

- HTTP has few "big" Servers, and many "small" Clients
- PVA/CA has few "big" Clients, and many "small" Servers

Time scales

- HTTP connections mostly short lived
- PVA/CA connections live longer

Administration

- HTTP installations span the planet
- PVA/CA mostly within an organizational unit

Names

- HTTP can leverage the distributed DNS name database
- PVA/CA use (mostly) broadcast name lookup

NSLS2 circa 2015 had ~800 servers on ~100 hosts.

PVA/CA w/ broadcast/multicast search has special vulnerability to MitM by "adjacent" attacker

What has been done?

- CA style "voluntary" authentication (host+user names)
 - "threat model" is stray mouse click
 - PVA does the same
- Access "Security" (aka. EPICS ACL)
- Server weakly authenticates client
- client does not authenticate server
- var asCheckClientIP 1
 - CA/PVA client host name can't spoof host name
 - Base 7.0.3.1

Partial mitigation

What **needs** protection?

Yes

- Unauthorized PUT
- Tampering with GET/MONITOR

Trick authorized user into Making incorrect PUT

No

Secrecy

May come incidentally, just not required

Threat model

Actors

- Passive attacker on adjacent host
- Active attacker on adjacent host
- Attacker on client host
- Attacker on server host
- Compromised client
- Compromised server

Same subnet

Same host

Same process

Threat Vectors (1)

- Passive traffic inspection (TCP/UDP)
- Denial of service by search spam
- Search hijacking
- Server impersonation
- Server credential theft

Reasonable © Mitigation?

Yes/No

Doesn't matter

Partial

Yes

Yes

Partial

Threat Vectors (2)

- Passive traffic inspection (TCP/UDP)
- Denial of service by search spam
- Search hijacking
- Server impersonation
- Server credential theft

Reasonable © Mitigation?

TLS/??? Doesn't matter

NameServer

NS

TLS

NS + cert. pinning

TLS for PVA

System Considerations

- Distributing CA certs.
 - Straight forward copying of (mostly) static files
- Issuing Server (and Client) certs.
 - Tedious ~manual process
 - What Common Name?
- Cert. validity
 - Expiration date?
 - Certificate Revocation List?
 - Periodic online check (Open Certificate Status Protocol)?

Certificate Validity

- Time based
 - Valid between X and Y

Trust in NTP becomes critical

- Encoded in certificate
- CRL
 - Periodically published list of revoked (bad) certs.
- Open Certificate Status Protocol
 - Access to database of signatures on valid certificates (w/ time)
 - Like an expiration date
 - Can be updated **w/o reissuing** cert.
 - Requires client connection to OCSP server(s)

"stapling" helps

"secure" EPICS?

- Distributed name server
 - Bridge to site user auth. systems
 - Cert. management
- IOCs
 - TLS Cert.
 - Key is unique ID

What to do now?

- Stronger authentication
 - in both directions

Zoo of user auth. mechanisms (kerberos, ldap, ...)

Client authenticates server!

- Distributed Name server
 - prevent trivial MitM
 - "pinning" prevents (some) impersonation
- Secure transport (TLS)

What to do now?

Can sites collect operations stats on how remote access affects MTtR?

How many trouble calls involving remote triage?

How many trouble calls involving remote repair?

I can help to aggregate

